3.8.59 \(\int \cot ^{\frac {3}{2}}(c+d x) (a+i a \tan (c+d x))^{3/2} \, dx\) [759]

3.8.59.1 Optimal result
3.8.59.2 Mathematica [B] (verified)
3.8.59.3 Rubi [A] (verified)
3.8.59.4 Maple [B] (verified)
3.8.59.5 Fricas [B] (verification not implemented)
3.8.59.6 Sympy [F(-1)]
3.8.59.7 Maxima [B] (verification not implemented)
3.8.59.8 Giac [F]
3.8.59.9 Mupad [F(-1)]

3.8.59.1 Optimal result

Integrand size = 28, antiderivative size = 103 \[ \int \cot ^{\frac {3}{2}}(c+d x) (a+i a \tan (c+d x))^{3/2} \, dx=\frac {(2+2 i) a^{3/2} \text {arctanh}\left (\frac {(1+i) \sqrt {a} \sqrt {\tan (c+d x)}}{\sqrt {a+i a \tan (c+d x)}}\right ) \sqrt {\cot (c+d x)} \sqrt {\tan (c+d x)}}{d}-\frac {2 a \sqrt {\cot (c+d x)} \sqrt {a+i a \tan (c+d x)}}{d} \]

output
(2+2*I)*a^(3/2)*arctanh((1+I)*a^(1/2)*tan(d*x+c)^(1/2)/(a+I*a*tan(d*x+c))^ 
(1/2))*cot(d*x+c)^(1/2)*tan(d*x+c)^(1/2)/d-2*a*cot(d*x+c)^(1/2)*(a+I*a*tan 
(d*x+c))^(1/2)/d
 
3.8.59.2 Mathematica [B] (verified)

Both result and optimal contain complex but leaf count is larger than twice the leaf count of optimal. \(258\) vs. \(2(103)=206\).

Time = 4.57 (sec) , antiderivative size = 258, normalized size of antiderivative = 2.50 \[ \int \cot ^{\frac {3}{2}}(c+d x) (a+i a \tan (c+d x))^{3/2} \, dx=-\frac {2 a \sqrt {\cot (c+d x)} \left (\sqrt {a} \text {arcsinh}\left (\frac {\sqrt {i a \tan (c+d x)}}{\sqrt {a}}\right ) (1+i \tan (c+d x)) \sqrt {i a \tan (c+d x)}-(-1)^{3/4} a \text {arcsinh}\left (\sqrt [4]{-1} \sqrt {\tan (c+d x)}\right ) \sqrt {\tan (c+d x)} (-i+\tan (c+d x))+\sqrt {1+i \tan (c+d x)} \left (a+i a \tan (c+d x)-\sqrt {2} \text {arctanh}\left (\frac {\sqrt {2} \sqrt {i a \tan (c+d x)}}{\sqrt {a+i a \tan (c+d x)}}\right ) \sqrt {i a \tan (c+d x)} \sqrt {a+i a \tan (c+d x)}\right )\right )}{d \sqrt {1+i \tan (c+d x)} \sqrt {a+i a \tan (c+d x)}} \]

input
Integrate[Cot[c + d*x]^(3/2)*(a + I*a*Tan[c + d*x])^(3/2),x]
 
output
(-2*a*Sqrt[Cot[c + d*x]]*(Sqrt[a]*ArcSinh[Sqrt[I*a*Tan[c + d*x]]/Sqrt[a]]* 
(1 + I*Tan[c + d*x])*Sqrt[I*a*Tan[c + d*x]] - (-1)^(3/4)*a*ArcSinh[(-1)^(1 
/4)*Sqrt[Tan[c + d*x]]]*Sqrt[Tan[c + d*x]]*(-I + Tan[c + d*x]) + Sqrt[1 + 
I*Tan[c + d*x]]*(a + I*a*Tan[c + d*x] - Sqrt[2]*ArcTanh[(Sqrt[2]*Sqrt[I*a* 
Tan[c + d*x]])/Sqrt[a + I*a*Tan[c + d*x]]]*Sqrt[I*a*Tan[c + d*x]]*Sqrt[a + 
 I*a*Tan[c + d*x]])))/(d*Sqrt[1 + I*Tan[c + d*x]]*Sqrt[a + I*a*Tan[c + d*x 
]])
 
3.8.59.3 Rubi [A] (verified)

Time = 0.51 (sec) , antiderivative size = 104, normalized size of antiderivative = 1.01, number of steps used = 8, number of rules used = 7, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.250, Rules used = {3042, 4729, 3042, 4028, 3042, 4027, 218}

Below are the steps used by Rubi to obtain the solution. The rule number used for the transformation is given above next to the arrow. The rules definitions used are listed below.

\(\displaystyle \int \cot ^{\frac {3}{2}}(c+d x) (a+i a \tan (c+d x))^{3/2} \, dx\)

\(\Big \downarrow \) 3042

\(\displaystyle \int \cot (c+d x)^{3/2} (a+i a \tan (c+d x))^{3/2}dx\)

\(\Big \downarrow \) 4729

\(\displaystyle \sqrt {\tan (c+d x)} \sqrt {\cot (c+d x)} \int \frac {(i \tan (c+d x) a+a)^{3/2}}{\tan ^{\frac {3}{2}}(c+d x)}dx\)

\(\Big \downarrow \) 3042

\(\displaystyle \sqrt {\tan (c+d x)} \sqrt {\cot (c+d x)} \int \frac {(i \tan (c+d x) a+a)^{3/2}}{\tan (c+d x)^{3/2}}dx\)

\(\Big \downarrow \) 4028

\(\displaystyle \sqrt {\tan (c+d x)} \sqrt {\cot (c+d x)} \left (2 i a \int \frac {\sqrt {i \tan (c+d x) a+a}}{\sqrt {\tan (c+d x)}}dx-\frac {2 a \sqrt {a+i a \tan (c+d x)}}{d \sqrt {\tan (c+d x)}}\right )\)

\(\Big \downarrow \) 3042

\(\displaystyle \sqrt {\tan (c+d x)} \sqrt {\cot (c+d x)} \left (2 i a \int \frac {\sqrt {i \tan (c+d x) a+a}}{\sqrt {\tan (c+d x)}}dx-\frac {2 a \sqrt {a+i a \tan (c+d x)}}{d \sqrt {\tan (c+d x)}}\right )\)

\(\Big \downarrow \) 4027

\(\displaystyle \sqrt {\tan (c+d x)} \sqrt {\cot (c+d x)} \left (\frac {4 a^3 \int \frac {1}{-\frac {2 \tan (c+d x) a^2}{i \tan (c+d x) a+a}-i a}d\frac {\sqrt {\tan (c+d x)}}{\sqrt {i \tan (c+d x) a+a}}}{d}-\frac {2 a \sqrt {a+i a \tan (c+d x)}}{d \sqrt {\tan (c+d x)}}\right )\)

\(\Big \downarrow \) 218

\(\displaystyle \sqrt {\tan (c+d x)} \sqrt {\cot (c+d x)} \left (\frac {(2+2 i) a^{3/2} \text {arctanh}\left (\frac {(1+i) \sqrt {a} \sqrt {\tan (c+d x)}}{\sqrt {a+i a \tan (c+d x)}}\right )}{d}-\frac {2 a \sqrt {a+i a \tan (c+d x)}}{d \sqrt {\tan (c+d x)}}\right )\)

input
Int[Cot[c + d*x]^(3/2)*(a + I*a*Tan[c + d*x])^(3/2),x]
 
output
Sqrt[Cot[c + d*x]]*Sqrt[Tan[c + d*x]]*(((2 + 2*I)*a^(3/2)*ArcTanh[((1 + I) 
*Sqrt[a]*Sqrt[Tan[c + d*x]])/Sqrt[a + I*a*Tan[c + d*x]]])/d - (2*a*Sqrt[a 
+ I*a*Tan[c + d*x]])/(d*Sqrt[Tan[c + d*x]]))
 

3.8.59.3.1 Defintions of rubi rules used

rule 218
Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(Rt[a/b, 2]/a)*ArcTan[x/R 
t[a/b, 2]], x] /; FreeQ[{a, b}, x] && PosQ[a/b]
 

rule 3042
Int[u_, x_Symbol] :> Int[DeactivateTrig[u, x], x] /; FunctionOfTrigOfLinear 
Q[u, x]
 

rule 4027
Int[Sqrt[(a_) + (b_.)*tan[(e_.) + (f_.)*(x_)]]/Sqrt[(c_.) + (d_.)*tan[(e_.) 
 + (f_.)*(x_)]], x_Symbol] :> Simp[-2*a*(b/f)   Subst[Int[1/(a*c - b*d - 2* 
a^2*x^2), x], x, Sqrt[c + d*Tan[e + f*x]]/Sqrt[a + b*Tan[e + f*x]]], x] /; 
FreeQ[{a, b, c, d, e, f}, x] && NeQ[b*c - a*d, 0] && EqQ[a^2 + b^2, 0] && N 
eQ[c^2 + d^2, 0]
 

rule 4028
Int[((a_) + (b_.)*tan[(e_.) + (f_.)*(x_)])^(m_)*((c_.) + (d_.)*tan[(e_.) + 
(f_.)*(x_)])^(n_), x_Symbol] :> Simp[a*b*(a + b*Tan[e + f*x])^(m - 1)*((c + 
 d*Tan[e + f*x])^(n + 1)/(f*(m - 1)*(a*c - b*d))), x] + Simp[2*(a^2/(a*c - 
b*d))   Int[(a + b*Tan[e + f*x])^(m - 1)*(c + d*Tan[e + f*x])^(n + 1), x], 
x] /; FreeQ[{a, b, c, d, e, f}, x] && NeQ[b*c - a*d, 0] && EqQ[a^2 + b^2, 0 
] && NeQ[c^2 + d^2, 0] && EqQ[m + n, 0] && GtQ[m, 1/2]
 

rule 4729
Int[(cot[(a_.) + (b_.)*(x_)]*(c_.))^(m_.)*(u_), x_Symbol] :> Simp[(c*Cot[a 
+ b*x])^m*(c*Tan[a + b*x])^m   Int[ActivateTrig[u]/(c*Tan[a + b*x])^m, x], 
x] /; FreeQ[{a, b, c, m}, x] &&  !IntegerQ[m] && KnownTangentIntegrandQ[u, 
x]
 
3.8.59.4 Maple [B] (verified)

Both result and optimal contain complex but leaf count of result is larger than twice the leaf count of optimal. 327 vs. \(2 (85 ) = 170\).

Time = 1.48 (sec) , antiderivative size = 328, normalized size of antiderivative = 3.18

method result size
derivativedivides \(-\frac {\left (\frac {1}{\tan \left (d x +c \right )}\right )^{\frac {3}{2}} \tan \left (d x +c \right ) \sqrt {a \left (1+i \tan \left (d x +c \right )\right )}\, a \left (i \sqrt {2}\, \sqrt {i a}\, \ln \left (-\frac {-2 \sqrt {2}\, \sqrt {-i a}\, \sqrt {a \tan \left (d x +c \right ) \left (1+i \tan \left (d x +c \right )\right )}+i a -3 \tan \left (d x +c \right ) a}{\tan \left (d x +c \right )+i}\right ) a \tan \left (d x +c \right )+\sqrt {2}\, \sqrt {i a}\, \ln \left (-\frac {-2 \sqrt {2}\, \sqrt {-i a}\, \sqrt {a \tan \left (d x +c \right ) \left (1+i \tan \left (d x +c \right )\right )}+i a -3 \tan \left (d x +c \right ) a}{\tan \left (d x +c \right )+i}\right ) a \tan \left (d x +c \right )+4 \sqrt {-i a}\, \ln \left (\frac {2 i a \tan \left (d x +c \right )+2 \sqrt {a \tan \left (d x +c \right ) \left (1+i \tan \left (d x +c \right )\right )}\, \sqrt {i a}+a}{2 \sqrt {i a}}\right ) a \tan \left (d x +c \right )+4 \sqrt {a \tan \left (d x +c \right ) \left (1+i \tan \left (d x +c \right )\right )}\, \sqrt {i a}\, \sqrt {-i a}\right )}{2 d \sqrt {-i a}\, \sqrt {i a}\, \sqrt {a \tan \left (d x +c \right ) \left (1+i \tan \left (d x +c \right )\right )}}\) \(328\)
default \(-\frac {\left (\frac {1}{\tan \left (d x +c \right )}\right )^{\frac {3}{2}} \tan \left (d x +c \right ) \sqrt {a \left (1+i \tan \left (d x +c \right )\right )}\, a \left (i \sqrt {2}\, \sqrt {i a}\, \ln \left (-\frac {-2 \sqrt {2}\, \sqrt {-i a}\, \sqrt {a \tan \left (d x +c \right ) \left (1+i \tan \left (d x +c \right )\right )}+i a -3 \tan \left (d x +c \right ) a}{\tan \left (d x +c \right )+i}\right ) a \tan \left (d x +c \right )+\sqrt {2}\, \sqrt {i a}\, \ln \left (-\frac {-2 \sqrt {2}\, \sqrt {-i a}\, \sqrt {a \tan \left (d x +c \right ) \left (1+i \tan \left (d x +c \right )\right )}+i a -3 \tan \left (d x +c \right ) a}{\tan \left (d x +c \right )+i}\right ) a \tan \left (d x +c \right )+4 \sqrt {-i a}\, \ln \left (\frac {2 i a \tan \left (d x +c \right )+2 \sqrt {a \tan \left (d x +c \right ) \left (1+i \tan \left (d x +c \right )\right )}\, \sqrt {i a}+a}{2 \sqrt {i a}}\right ) a \tan \left (d x +c \right )+4 \sqrt {a \tan \left (d x +c \right ) \left (1+i \tan \left (d x +c \right )\right )}\, \sqrt {i a}\, \sqrt {-i a}\right )}{2 d \sqrt {-i a}\, \sqrt {i a}\, \sqrt {a \tan \left (d x +c \right ) \left (1+i \tan \left (d x +c \right )\right )}}\) \(328\)

input
int(cot(d*x+c)^(3/2)*(a+I*a*tan(d*x+c))^(3/2),x,method=_RETURNVERBOSE)
 
output
-1/2/d*(1/tan(d*x+c))^(3/2)*tan(d*x+c)*(a*(1+I*tan(d*x+c)))^(1/2)*a*(I*2^( 
1/2)*(I*a)^(1/2)*ln(-(-2*2^(1/2)*(-I*a)^(1/2)*(a*tan(d*x+c)*(1+I*tan(d*x+c 
)))^(1/2)+I*a-3*tan(d*x+c)*a)/(tan(d*x+c)+I))*a*tan(d*x+c)+2^(1/2)*(I*a)^( 
1/2)*ln(-(-2*2^(1/2)*(-I*a)^(1/2)*(a*tan(d*x+c)*(1+I*tan(d*x+c)))^(1/2)+I* 
a-3*tan(d*x+c)*a)/(tan(d*x+c)+I))*a*tan(d*x+c)+4*(-I*a)^(1/2)*ln(1/2*(2*I* 
a*tan(d*x+c)+2*(a*tan(d*x+c)*(1+I*tan(d*x+c)))^(1/2)*(I*a)^(1/2)+a)/(I*a)^ 
(1/2))*a*tan(d*x+c)+4*(a*tan(d*x+c)*(1+I*tan(d*x+c)))^(1/2)*(I*a)^(1/2)*(- 
I*a)^(1/2))/(-I*a)^(1/2)/(I*a)^(1/2)/(a*tan(d*x+c)*(1+I*tan(d*x+c)))^(1/2)
 
3.8.59.5 Fricas [B] (verification not implemented)

Both result and optimal contain complex but leaf count of result is larger than twice the leaf count of optimal. 302 vs. \(2 (79) = 158\).

Time = 0.26 (sec) , antiderivative size = 302, normalized size of antiderivative = 2.93 \[ \int \cot ^{\frac {3}{2}}(c+d x) (a+i a \tan (c+d x))^{3/2} \, dx=-\frac {8 \, \sqrt {2} a \sqrt {\frac {a}{e^{\left (2 i \, d x + 2 i \, c\right )} + 1}} \sqrt {\frac {i \, e^{\left (2 i \, d x + 2 i \, c\right )} + i}{e^{\left (2 i \, d x + 2 i \, c\right )} - 1}} e^{\left (i \, d x + i \, c\right )} - \sqrt {\frac {32 i \, a^{3}}{d^{2}}} d \log \left (\frac {{\left (\sqrt {2} {\left (d e^{\left (2 i \, d x + 2 i \, c\right )} - d\right )} \sqrt {\frac {32 i \, a^{3}}{d^{2}}} \sqrt {\frac {a}{e^{\left (2 i \, d x + 2 i \, c\right )} + 1}} \sqrt {\frac {i \, e^{\left (2 i \, d x + 2 i \, c\right )} + i}{e^{\left (2 i \, d x + 2 i \, c\right )} - 1}} + 8 i \, a^{2} e^{\left (i \, d x + i \, c\right )}\right )} e^{\left (-i \, d x - i \, c\right )}}{2 \, a}\right ) + \sqrt {\frac {32 i \, a^{3}}{d^{2}}} d \log \left (-\frac {{\left (\sqrt {2} {\left (d e^{\left (2 i \, d x + 2 i \, c\right )} - d\right )} \sqrt {\frac {32 i \, a^{3}}{d^{2}}} \sqrt {\frac {a}{e^{\left (2 i \, d x + 2 i \, c\right )} + 1}} \sqrt {\frac {i \, e^{\left (2 i \, d x + 2 i \, c\right )} + i}{e^{\left (2 i \, d x + 2 i \, c\right )} - 1}} - 8 i \, a^{2} e^{\left (i \, d x + i \, c\right )}\right )} e^{\left (-i \, d x - i \, c\right )}}{2 \, a}\right )}{4 \, d} \]

input
integrate(cot(d*x+c)^(3/2)*(a+I*a*tan(d*x+c))^(3/2),x, algorithm="fricas")
 
output
-1/4*(8*sqrt(2)*a*sqrt(a/(e^(2*I*d*x + 2*I*c) + 1))*sqrt((I*e^(2*I*d*x + 2 
*I*c) + I)/(e^(2*I*d*x + 2*I*c) - 1))*e^(I*d*x + I*c) - sqrt(32*I*a^3/d^2) 
*d*log(1/2*(sqrt(2)*(d*e^(2*I*d*x + 2*I*c) - d)*sqrt(32*I*a^3/d^2)*sqrt(a/ 
(e^(2*I*d*x + 2*I*c) + 1))*sqrt((I*e^(2*I*d*x + 2*I*c) + I)/(e^(2*I*d*x + 
2*I*c) - 1)) + 8*I*a^2*e^(I*d*x + I*c))*e^(-I*d*x - I*c)/a) + sqrt(32*I*a^ 
3/d^2)*d*log(-1/2*(sqrt(2)*(d*e^(2*I*d*x + 2*I*c) - d)*sqrt(32*I*a^3/d^2)* 
sqrt(a/(e^(2*I*d*x + 2*I*c) + 1))*sqrt((I*e^(2*I*d*x + 2*I*c) + I)/(e^(2*I 
*d*x + 2*I*c) - 1)) - 8*I*a^2*e^(I*d*x + I*c))*e^(-I*d*x - I*c)/a))/d
 
3.8.59.6 Sympy [F(-1)]

Timed out. \[ \int \cot ^{\frac {3}{2}}(c+d x) (a+i a \tan (c+d x))^{3/2} \, dx=\text {Timed out} \]

input
integrate(cot(d*x+c)**(3/2)*(a+I*a*tan(d*x+c))**(3/2),x)
 
output
Timed out
 
3.8.59.7 Maxima [B] (verification not implemented)

Both result and optimal contain complex but leaf count of result is larger than twice the leaf count of optimal. 545 vs. \(2 (79) = 158\).

Time = 0.40 (sec) , antiderivative size = 545, normalized size of antiderivative = 5.29 \[ \int \cot ^{\frac {3}{2}}(c+d x) (a+i a \tan (c+d x))^{3/2} \, dx=\frac {{\left (\left (2 i - 2\right ) \, a \arctan \left (2 \, {\left (\cos \left (2 \, d x + 2 \, c\right )^{2} + \sin \left (2 \, d x + 2 \, c\right )^{2} - 2 \, \cos \left (2 \, d x + 2 \, c\right ) + 1\right )}^{\frac {1}{4}} \sin \left (\frac {1}{2} \, \arctan \left (\sin \left (2 \, d x + 2 \, c\right ), \cos \left (2 \, d x + 2 \, c\right ) - 1\right )\right ) + 2 \, \sin \left (d x + c\right ), 2 \, {\left (\cos \left (2 \, d x + 2 \, c\right )^{2} + \sin \left (2 \, d x + 2 \, c\right )^{2} - 2 \, \cos \left (2 \, d x + 2 \, c\right ) + 1\right )}^{\frac {1}{4}} \cos \left (\frac {1}{2} \, \arctan \left (\sin \left (2 \, d x + 2 \, c\right ), \cos \left (2 \, d x + 2 \, c\right ) - 1\right )\right ) + 2 \, \cos \left (d x + c\right )\right ) + \left (i + 1\right ) \, a \log \left (4 \, \cos \left (d x + c\right )^{2} + 4 \, \sin \left (d x + c\right )^{2} + 4 \, \sqrt {\cos \left (2 \, d x + 2 \, c\right )^{2} + \sin \left (2 \, d x + 2 \, c\right )^{2} - 2 \, \cos \left (2 \, d x + 2 \, c\right ) + 1} {\left (\cos \left (\frac {1}{2} \, \arctan \left (\sin \left (2 \, d x + 2 \, c\right ), \cos \left (2 \, d x + 2 \, c\right ) - 1\right )\right )^{2} + \sin \left (\frac {1}{2} \, \arctan \left (\sin \left (2 \, d x + 2 \, c\right ), \cos \left (2 \, d x + 2 \, c\right ) - 1\right )\right )^{2}\right )} + 8 \, {\left (\cos \left (2 \, d x + 2 \, c\right )^{2} + \sin \left (2 \, d x + 2 \, c\right )^{2} - 2 \, \cos \left (2 \, d x + 2 \, c\right ) + 1\right )}^{\frac {1}{4}} {\left (\cos \left (d x + c\right ) \cos \left (\frac {1}{2} \, \arctan \left (\sin \left (2 \, d x + 2 \, c\right ), \cos \left (2 \, d x + 2 \, c\right ) - 1\right )\right ) + \sin \left (d x + c\right ) \sin \left (\frac {1}{2} \, \arctan \left (\sin \left (2 \, d x + 2 \, c\right ), \cos \left (2 \, d x + 2 \, c\right ) - 1\right )\right )\right )}\right )\right )} {\left (\cos \left (2 \, d x + 2 \, c\right )^{2} + \sin \left (2 \, d x + 2 \, c\right )^{2} - 2 \, \cos \left (2 \, d x + 2 \, c\right ) + 1\right )}^{\frac {1}{4}} \sqrt {a} - 2 \, {\left ({\left (\left (i + 1\right ) \, a \cos \left (d x + c\right ) + \left (i - 1\right ) \, a \sin \left (d x + c\right )\right )} \cos \left (\frac {1}{2} \, \arctan \left (\sin \left (2 \, d x + 2 \, c\right ), \cos \left (2 \, d x + 2 \, c\right ) - 1\right )\right ) + {\left (-\left (i - 1\right ) \, a \cos \left (d x + c\right ) + \left (i + 1\right ) \, a \sin \left (d x + c\right )\right )} \sin \left (\frac {1}{2} \, \arctan \left (\sin \left (2 \, d x + 2 \, c\right ), \cos \left (2 \, d x + 2 \, c\right ) - 1\right )\right )\right )} \sqrt {a}}{{\left (\cos \left (2 \, d x + 2 \, c\right )^{2} + \sin \left (2 \, d x + 2 \, c\right )^{2} - 2 \, \cos \left (2 \, d x + 2 \, c\right ) + 1\right )}^{\frac {1}{4}} d} \]

input
integrate(cot(d*x+c)^(3/2)*(a+I*a*tan(d*x+c))^(3/2),x, algorithm="maxima")
 
output
(((2*I - 2)*a*arctan2(2*(cos(2*d*x + 2*c)^2 + sin(2*d*x + 2*c)^2 - 2*cos(2 
*d*x + 2*c) + 1)^(1/4)*sin(1/2*arctan2(sin(2*d*x + 2*c), cos(2*d*x + 2*c) 
- 1)) + 2*sin(d*x + c), 2*(cos(2*d*x + 2*c)^2 + sin(2*d*x + 2*c)^2 - 2*cos 
(2*d*x + 2*c) + 1)^(1/4)*cos(1/2*arctan2(sin(2*d*x + 2*c), cos(2*d*x + 2*c 
) - 1)) + 2*cos(d*x + c)) + (I + 1)*a*log(4*cos(d*x + c)^2 + 4*sin(d*x + c 
)^2 + 4*sqrt(cos(2*d*x + 2*c)^2 + sin(2*d*x + 2*c)^2 - 2*cos(2*d*x + 2*c) 
+ 1)*(cos(1/2*arctan2(sin(2*d*x + 2*c), cos(2*d*x + 2*c) - 1))^2 + sin(1/2 
*arctan2(sin(2*d*x + 2*c), cos(2*d*x + 2*c) - 1))^2) + 8*(cos(2*d*x + 2*c) 
^2 + sin(2*d*x + 2*c)^2 - 2*cos(2*d*x + 2*c) + 1)^(1/4)*(cos(d*x + c)*cos( 
1/2*arctan2(sin(2*d*x + 2*c), cos(2*d*x + 2*c) - 1)) + sin(d*x + c)*sin(1/ 
2*arctan2(sin(2*d*x + 2*c), cos(2*d*x + 2*c) - 1)))))*(cos(2*d*x + 2*c)^2 
+ sin(2*d*x + 2*c)^2 - 2*cos(2*d*x + 2*c) + 1)^(1/4)*sqrt(a) - 2*(((I + 1) 
*a*cos(d*x + c) + (I - 1)*a*sin(d*x + c))*cos(1/2*arctan2(sin(2*d*x + 2*c) 
, cos(2*d*x + 2*c) - 1)) + (-(I - 1)*a*cos(d*x + c) + (I + 1)*a*sin(d*x + 
c))*sin(1/2*arctan2(sin(2*d*x + 2*c), cos(2*d*x + 2*c) - 1)))*sqrt(a))/((c 
os(2*d*x + 2*c)^2 + sin(2*d*x + 2*c)^2 - 2*cos(2*d*x + 2*c) + 1)^(1/4)*d)
 
3.8.59.8 Giac [F]

\[ \int \cot ^{\frac {3}{2}}(c+d x) (a+i a \tan (c+d x))^{3/2} \, dx=\int { {\left (i \, a \tan \left (d x + c\right ) + a\right )}^{\frac {3}{2}} \cot \left (d x + c\right )^{\frac {3}{2}} \,d x } \]

input
integrate(cot(d*x+c)^(3/2)*(a+I*a*tan(d*x+c))^(3/2),x, algorithm="giac")
 
output
integrate((I*a*tan(d*x + c) + a)^(3/2)*cot(d*x + c)^(3/2), x)
 
3.8.59.9 Mupad [F(-1)]

Timed out. \[ \int \cot ^{\frac {3}{2}}(c+d x) (a+i a \tan (c+d x))^{3/2} \, dx=\int {\mathrm {cot}\left (c+d\,x\right )}^{3/2}\,{\left (a+a\,\mathrm {tan}\left (c+d\,x\right )\,1{}\mathrm {i}\right )}^{3/2} \,d x \]

input
int(cot(c + d*x)^(3/2)*(a + a*tan(c + d*x)*1i)^(3/2),x)
 
output
int(cot(c + d*x)^(3/2)*(a + a*tan(c + d*x)*1i)^(3/2), x)